Decomposing Time-Lapse Paintings into Layers
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Figure 1: Our approach enables rich history-based editing operations on physical paintings. From a time lapse recording of the painting
process (bottom) we extract translucent paint layers into a temporal creation history. This allows artists to perform otherwise impossible
spatio-temporal selections & edits which leverage temporal information to produce complex effects such as color gradients controlled by
time (top left) or temporal eraser (top right). (Paint layers in this example use Porter-Duff “over” blending.) Time lapse video (©) Marcello
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Abstract

The creation of a painting, in the physical world or digitally, is a
process that occurs over time. Later strokes cover earlier strokes,
and strokes painted at a similar time are likely to be part of the
same object. In the final painting, this temporal history is lost, and
a static arrangement of color is all that remains. The rich literature
for interacting with image editing history cannot be used. To enable
these interactions, we present a set of techniques to decompose a
time lapse video of a painting (defined generally to include pencils,
markers, etc.) into a sequence of translucent “stroke” images. We
present translucency-maximizing solutions for recovering physical
(Kubelka and Munk layering) or digital (Porter and Duff “over”
blending operation) paint parameters from before/after image pairs.
We also present a pipeline for processing real-world videos of paint-
ings capable of handling long-term occlusions, such as the painter’s
hand and its shadow, color shifts, and noise.

CR Categories:  1.3.7 [Computer Graphics]: Picture/Image
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Generation—Bitmap and framebuffer operations 1.4.6 [Image Pro-
cessing and Computer Vision]: Segmentation—Pixel classification;

Keywords: images, surfaces, depth, time, video, channel, segmen-
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1 Introduction

A painting is an arrangement of colors on a 2D canvas. During
the painting process, artists deposit color throughout the canvas
via a sequence of strokes, often with a real (or simulated, in the
case of digital paintings) paint brush. The final painting is, from
a computational point of view, a grid of unstructured color values.
Extracting structure from the final painting is extremely challenging.
Yet the temporal record, which is lost in the final painting, is infor-
mative about the scene being painted. Complex drawings are drawn
according to a hierarchical structure [Taylor and Tversky 1992]. Ob-
jects and parts of objects are drawn together using lower-level rules
[Van Sommers 1984; Novick and Tversky 1987; Tversky 1999].

Interacting with editing history is a powerful concept in human-
computer interaction. (See Nancel and Cockburn’s CAUSAL-
ITY [2014] for a recent survey and conceptual model.) This rich
literature on history systems extends far beyond undo/redo. For
digital image editing, this literature includes a generalization of lay-
ers for scaling, resizing, and recoloring strokes [Nancel and Cock-
burn 2014], revision control [Chen et al. 2011], grouping command
history [Chen et al. 2012], learning from or reapplying previous
commands [Grossman et al. 2010; Berthouzoz et al. 2011; Xing
et al. 2014]. Wetpaint [Bonanni et al. 2009] explored a tangible
“scraping” interaction to visualize layered information, such as a
painting’s history. Such powerful interactions are unavailable for



physical paintings, even when digitized.

To enable these interactions, we propose to extract editing history
from paintings by analyzing time lapse videos of their creation and
decomposing them into translucent paint layers. These paint layers
correspond to the “commands” necessary for history-based editing
applications. Throughout this paper (unless stated otherwise), we
use “paint” in a general sense to mean any kind of physical marking,
including pencils, pens, markers, watercolor, acrylic, etc. Time
lapse videos of paintings are readily available online, often for
instructional or demonstrative purposes. Our analysis can also be
used to recover a command history for time-lapse videos of digital
paintings; this is useful for applying history-based editing operations
to popular digital painting applications.

There are two primary challenges to extracting paint layers from
time lapse videos. The first challenge is that, given two images from
a time lapse, the paint layer which effected the observed difference
is ambiguous. For example, an observed change from white to pink
could be the result of opaque pink paint or translucent red paint.
Because opaque paint completely covers or hides colors underneath,
it limits the reuse of covered strokes in history-based editing op-
erations. Therefore, we seek maximally translucent paint in order
for the layers to be maximally reusable. In Section 3, we present
solutions based on the Kubelka-Munk model of pigment layering
[Kubelka 1948] and the standard Porter and Duff [Porter and Duff
1984] “over” blending equation used throughout computer graph-
ics. The second challenge is that time-lapse painting videos contain
many changes not due to the application of paint. Spurious changes
may be caused by occlusions, such as the painter’s hand or brush
and accompanying shadows; camera motion, refocusing, or color
balance changes; compression noise, watermarks, or overlays; and
dynamic effects like canvas vibration and the drying of watercolor.
Unlike the foreground object subtraction problem in computer vi-
sion, some parts of the canvas may be occluded more often than
not. In Section 4, we present a solution for processing real-world
time-lapse painting videos. Our solution removes even extremely
frequent occlusions, noise, and global color shifts. Camera and
canvas motion are beyond the scope of this work.

Contributions

e A pipeline for processing real-world time-lapse paintings (Sec-
tion 4), capable of suppressing long-term occlusions such as
the painter’s hand and its shadow, short-term occlusions like
brushes, noise due to compression and lighting, and color
shifts.

e Extremely efficient algorithms for decomposing image se-
quences into translucent paint layers according to either the
Kubelka-Munk model for physical material layering, an exten-
sion of their model for mixing, or the standard linear blending
algorithm used in digital painting (Section 3).

Our contributions are in the generation of this data, not in its down-
stream applications (Section 5).

2 Related Work

Interacting with editing history In addition to the previously
mentioned history-based interactions for image editing, related inter-
actions have also been proposed for 2D and 3D vector graphics. Su et
al. [2009] presented a technique for 2D vector graphics editing which
suggests objects to select based on previous selections in the user’s
command history. Noris et al. [2012] presented a scribble-based
approach to segment 2D vector graphics sketches based on time
of creation, which helps distinguish nearby strokes drawn at very

different times. VisTrails [2009] is a commercial tool for review-
ing and reusing command history in the commercial 3D modeling
package Maya. Denning and Pellacini [2013] presented algorithms
for revision control of 3D meshes. Chen et al. [2014] introduced
a technique for choosing good views and segmenting 3D models
based on the editing history. Two recent works analyze and visualize
changes in outdoor, urban scenes [Matzen and Snavely 2014] and
construction sites [Karsch et al. 2014]. These approaches operate
on a collection of photographs from different viewpoints, relying on
structure-from-motion to obtain a 3D reconstruction (the former) or
a 3D architectural model (the latter). Finally, while not about editing
history per se, McCann and Pollard [2009; 2012] introduced two
noteworthy generalizations of layers for image editing.

Decomposing edits Hu et al. [2013] investigated the related prob-
lem of recovering an image editing operation from a pair of images.
The editing operations they support are duplicating and geometri-
cally transforming an image region, and adjusting the color of an
image region. We solve the orthogonal problem of recovering maxi-
mally translucent paint layers using both a physical Kubelka-Munk
model and the traditional “over” digital compositing operation. Our
work also includes a far more efficient algorithm for finding per-pixel
opacity for a single-color layer.

Amati and Brostow [2010] analyzed videos of sumi-e paintings, a
style of monochromatic (shades of black) art with relatively few
strokes. They find a small number of clean frames by comparing
binary thresholded frames to the binary thresholded final painting.
The result of their analysis is a segmentation of the final painting
into parts (e.g. leaves and flowers). We are inspired by this work and
share the observation that paint is far more temporally stable than
occlusions, and that algorithms for skin detection and foreground
subtraction are unsuitably unstable for analyzing painting videos.

Fu et al. [2011] extract an animated stroke order from static line
drawings based on such cognitive and geometric properties. They
operate at the part level and take as input a drawing segmented into
objects. In contrast, we operate on paintings and are already given
a time lapse sequence of its creation. Both our work and Fu et
al. [2011] rely on a similar assumption, that the order of markings
made when drawing or painting is not random.

Xu et al. [2006] introduced an algorithm that decomposes a single
image of a Chinese painting into a collection of layered brush strokes.
This comprises image segmentation, detecting the curves of painted
strokes, and separating colors for overlapping strokes. Richardt
et al. [2014] presented a semi-automatic approach to decompose
single images into a mix of transparent and opaque vector graphic
layers, where the vector graphics can be filled with linear and radial
gradients. In contrast, our approach relies on a video of the creation
process, which simplifies segmentation though not color separation.
We treat color separation in terms of both the Kubelka-Munk physi-
cal layering model and the digital compositing “over” operation, and
transform the problem into a simple geometric one in RGB-space.

Image matting Color separation is also related to layer extraction
and blue-screen matting. Szeliski et al. [2000] presented a solution
to the layer extraction problem in which two independent “images”
are layered on top of each other as a result of reflection or trans-
parency. Their approach requires that the layered images are moving
with respect to each other, a reasonable assumption for a reflection
on a window, but one that does not holds in our scenario. Farid
and Adelson [1999] introduced another solution to this problem,
but require as input two photographs taken with a polarized light
filter. Smith and Blinn [1996] study the related blue-screen matting
problem of separating a potentially translucent foreground object
from one or two known backgrounds. Their analysis of the problem
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Figure 2: The cube of valid RGB colors. Left: The color of a pixel
before and after a modification to a painting defines a line. With
Porter-Duff’s “over” compositing, the paint color must lie on the
portion of the line beyond after and within the cube. Right: In RGB-
space, the after color of every pixel (here, i, j, k,l) affected by a
stroke is the result of pulling its before color towards the stroke’s
color.

shows that the problem is, in general, underspecified. Zongker et
al. [1999] solve a generalized version of the matting problem which
allows for reflections and refractions.

3 Decomposing Time Lapse Paintings

Viewed as a time lapse, the darkening of a
lemon (right) has an ambiguous interpreta-
tion. The darker color could either be the
result of painting with an opaque, darker
shade of yellow, or else it could be the re-
sult of painting with a “translucent” black
or brown pigment. (Translucency could be the result of pigment
layering or mixing; see below.) The opaque interpretation is always
possible, but completely hides all previous information, preventing
its use in later editing applications. For history-based editing oper-
ations, we claim that the translucent interpretation is more useful
and, in general, a better conceptual match to the painting process.
In other words, we wish not to distinguish between paint mixed on
the easel and paint mixed directly on the canvas, and to view even
“opaque” acrylic paint as potentially translucent.

© Will Kemp

Input  We take as input a time lapse recording of a painting in the
form of a sequence of albedo or reflectance images I, , I+,, ..., It
(We describe our process for obtaining such images from real-world
videos in Section 4.) An image I;, stores the state of the painting at
time ¢;. Each RGB color channel of a pixel store a value in [0, 1] rep-
resenting the overall fraction of incident light that is reflected at that
wavelength. Given two such images I;, , and I;,, our goal is to re-
cover the per-pixel parameters of “paint” P, such that applying P,
to Iy, , results in I;, . We do this using a physical Kubelka-Munk
model of material layering (Section 3.1, P;, = (Ry,,T%,)) and using
the linear blending equation [Porter and Duff 1984] commonly used
for digital compositing and painting (Section 3.2, P;; = RGBy,).

3.1 Recovering Physical Paint Parameters

Kubelka and Munk [Kubelka and Munk 1931; Kubelka 1948] mod-
eled the reflectance R and transmittance 7" of a layer of homoge-
neous material in terms of the material’s absorption and scattering
coefficients K and S. (All parameters are per-wavelength.) The
model is widely used in paint, plastic, paper, and textiles and has
previously been used in computer graphics for accurately simulating

paint [Konieczny and Meyer 2009; Curtis et al. 1997; Baxter et al.
2004; Haase and Meyer 1992; Lu et al. 2014; Budsberg 2007; Dan-
nen 2012]. A summary of useful formulae related to the Kubelka-
Munk model can be found in [Barbari¢-Mikocevi¢ and Itri¢ 2011].
‘When multiple materials are present, the Kubelka-Munk model can
be used in two ways: layering and mixing.

fr, 7

Layering Kubelka [1948] presented

formulae for the overall reflectance and | L-ayer, T, TR2
transmittance of a stack of non-opaque L

layers, given each layer’s individual re- ayer, |T |
flectance R and transmittance 1" coeffi- M Ir

cients." R and T can be expressed in terms of absorption, scattering,
and thickness parameters, but it is more straightforward and involves
fewer parameters to simply consider R and 7. In our scenario, we
observe a sequence of reflectance images I;,. Each I;, stores the
overall reflectance underneath every pixel at time ¢;. Iy, the initial
frame, stores the reflectance of the backing material, such as a blank
canvas or sheet of paper. We wish to find the reflectance R;, and
transmittance T3, of the paint layer that results in /;, when placed
above I;, ,. The equation is [Kubelka 1948; Kubelka 1954]:

I, = ) _ Ttithiml 1
t; Rtl—’_l—RtvLy (1)

(3 i—1
R,T € [0,1] and, due to the conservation of energy, 7'+ R < 1.
(The fraction of illumination absorbed by the layeris 1 — 17" — R.)
In general, there are infinitely many solutions, including the opaque
solution T3, = 0, Ry, = I;,. To maximize the reusability of recov-
ered layers, we find the solution that maximizes the transmittance
T:

lf Iti—l = OZ Rti = It,“ Tti =1- Iti
elseif I, =0: Ry, =0, Ty, =0

. 1 . _ _ It;
elseif I, + T, <2: Ry =0, Ty = Tt .
Iseif 1t <1: R, =0, T, =,/
else i oL t; =0, ti AT,

o,
Ise: R =X = It’;
else: t; — - Iti+1t.171 5
T, =1-X

To the best of our knowledge, these transmittance-maximizing so-
lutions have not previously been presented. See Appendix A for a
derivation. In our setting, where the I are RGB reflectance images,
R and T are also RGB images (with values in [0, 1]) and easily vi-
sualized (Figure 4). R is an additive image (transparent R is black)
and 7" is a multiplicative image (transparent 7" is white). Our solu-
tion continuously transitions between multiplicative blending with
bright backgrounds and additive blending with dark ones. Nearly
all changes are partially translucent, and more extreme changes
gradually become opaque. We compare our maximally transmissive
solutions to scanned watercolor layers in Figure 3.

Mixing The Kubelka-Munk mixing model, while suitable for ho-
mogeneous mixtures such as wet paint, is not as suited for our
purposes as layering. The mixing model can only approximate a
completely opaque layer of paint via very large mixing coefficients
(see supplemental materials). Moreover, the scattering and absorp-
tion parameters are less intuitive. They have no upper bound, unlike
transmittance and reflectance, which range from 0 to 1, and can be
visualized as an additive and multiplicative image. For completeness,

'Kubelka [1948] points out that the layering equation we use was inde-
pendently derived and presented by Gurevic in 1930 and by Judd in 1934.
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Figure 3: Our Kubelka-Munk layering model recovers different re-
[flectance and transmittance layers depending on the backing paper’s
brightness. To illustrate this difference, we scan blue and yellow
watercolor paint and their overlap (left column). By assuming dark
or bright backing paper, we can correspondingly recover different
pairs of reflectance and transmittance layers for the blue and yellow
paint, and reconstruct the overlap colors (middle and right columns).
When assuming dark backing paper (middle column), recovered lay-
ers are both reflective (additive) and transmissive (multiplicative),
and the overlap color will depend on the layer order. When assum-
ing bright backing paper (right column), the recovered paint layers
are purely transmissive (multiplicative). Purely transmissive layers
commute; the overlap color is independent of the layer order, and
the two reconstructed overlap colors are the same.

we include solutions for minimal modification of current mixing
parameters in the supplemental materials.

3.2 Recovering Digital Paint Parameters

In digital painting and compositing, the standard blending equation
is Porter and Duff [1984]’s “over” operation:

after = (1 — a)before + o - paint ?2)

In our setting, we treat before and after as the observed per-pixel
RGB reflectance in I, , and I;,. The layer’s translucency o €
[0, 1] is the interpolation parameter between before and paint.

To determine « and paint, we view the blending equation geomet-
rically in RGB space (Figure 2). For every changed pixel, possible
paint colors lie on the line passing through before and after, and, for
a given paint color on the line, o = % There are additional
constraints: 0 < a < 1 and paint’s RGB components must all lie
within [0, 1]. Note that paint cannot deviate from this line, or else
before would not exactly reconstruct after.

This is still, however, an under-constrained problem. We propose two
techniques for choosing paint and «, one that minimizes « and one
that computes a consistent paint color among pixels. A comparison
of these techniques can be seen in Figure 4. To minimize «, each
pixel’s paint is chosen to be the intersection of its line with the RGB
cube itself. This is equivalent to choosing the most extreme paint
possible. This SMALL-ALPHA approach is extremely efficient and
results in “minimally” opaque layers.

‘When minimizing o, however, pixels’ paint colors aren’t necessarily
consistent (Figure 4). For short time-lapse intervals, however, we
expect that the artist will only have used one color. Our CLOSEST-
PAINT approach finds the color that minimizes the squared distance
(in RGB-space) to every changed pixel’s line. The minimizing color

is then projected onto each pixel’s before after line. Solving the
least squares problem entails solving a simple 3 x 3 linear system

on white
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Figure 4: Before and after a stroke is applied. The RGBA layers
recovered by our algorithms SMALL-ALPHA, CLOSEST-PAINT,
CLOSEST-PAINT with quantization correction, and the ground truth
stroke itself. The Kubelka-Munk R and T’ values for the layer, and
the R, T values composited with white.
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of equations (3 being the number of color channels):

u; - (paint — before,)

E =
[[uil[?

u; + before, — paint|| , (3)

where u; = after, — before;. Building the 3 x 3 system requires
a summation over all n changed pixels. This approach is far more
efficient than the n x n approaches presented in Xu et al. [2006]
and Hu et al. [2013] and assumes nothing about ’s smoothness.

The intuition behind the CLOSEST-PAINT approach is that every
pixel affected by a stroke is pulled towards the stroke’s paint color,
by an amount determined by each pixel’s o parameter (Figure 2).
After projecting the global paint color onto the valid region of each
pixels’ line, we compute per-pixel a values.

Two minor improvements to CLOSEST-PAINT account for the quan-
tization of (typically 8-bit) color component values. Taking quanti-
zation into account, we seek paint and « such that

after = ROUND ((1 — a)before + o - paint)

Because after is the result of rounding, the line that paint must lie
on can pass through any part of the RGB “pixel cube” that rounds
to after. The accuracy of each line’s direction is proportional to its
length, so our first improvement is to weight each term in Equation 3
by ||after; — before,||*. Once we solve the least squares problem
and find the global paint color, our second improvement is to project
after onto the line between before and the minimizing paint color—
or as far towards the line as possible without crossing the boundary
of after’s “pixel cube.” We perform this quantization-correcting
projection prior to the final projection of the minimizing color onto

the valid region of the line passing through before and cg‘t?r.

4 Processing time lapse videos

Time lapse painting videos are readily available online, often for
instructional or demonstration purposes. Before these videos can be
processed by our layer decomposition algorithms (Section 3), they
must first be filtered to eliminate changes not due to the applica-
tion of paint and finally converted to reflectance (albedo) images.
Spurious changes can be caused by the environment (occlusions
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Figure 7: Background estimation algorithms are challenged by time-
lapse painting videos. We train Zivkovic and van der Heijden [2006]
and Godbehere et al. [2012] on 200 frames and vary their respective
thresholds. Both algorithms classify painted strokes as foreground
(or, with a liberal threshold, misclassify the hand and shadow). Our
algorithm’s keyframe mask (cyan) suppresses the hand and shadow;
the moving standard deviation (pure blue), with varying thresholds,
masks the pencil tip and little additional paint. Video (©) Marcello
Barenghi.

of the canvas, such as the painter’s hand or instruments, and ac-
companying shadows); camera (motion or color balance changes);
post-processing (compression noise, permanent watermarks or over-
lays, and other visual effects); and dynamics (canvas vibration or
motion and the drying of watercolor). In this work, we process time
lapse videos with long-term occlusions, global color shifts, compres-
sion noise, and a mild amount of watercolor paint dynamics. We
assume that the camera and canvas are fixed. Camera motion, canvas
vibration and motion, and permanent post-processing watermarks
and overlays are beyond the scope of this work. We further assume
that the input video has been manually cropped to the canvas.

Existing background/foreground estimation algorithms are not well-
suited for our particular input (a finding shared by Amati and Bros-
tow [2010]). To begin, many pixels are occluded or in shadow for
the majority of frames (Figure 6). The “background” in our case is
the painting, which is constantly changing in tandem and exactly un-
derneath the foreground object. The occluder includes a paintbrush
whose tip is exactly the same color as the paint we are interested in.
Likewise, we do not want to use a model of human skin, because

the hand may be similar to the paint colors. Background estimation
algorithms [Zivkovic and van der Heijden 2006; Godbehere et al.
2012] are challenged by our data and would produce large numbers
of spurious changes (Figure 7). Finally, watercolor and markers take
some time to dry, so they include some dynamics. If we waited until
they were completely dry, layer order would be strongly affected.

The recent time lapse motion compensation algorithm of Rubinstein
et al. [2011] is limited to very short sequences (300 frames took
50 hours, whereas our input sequences have ~5000 frames). They
search for motion in space as well as time; we do not need this
significant computational overhead. Nearly all steps in our video
processing pipeline are per-pixel (and embarrassingly parallel).

4.1 Our pipeline

Our video processing pipeline (Figure 5) handles global color-shifts,
removes noise, and is capable of ignoring frequent or majority occlu-
sions. To motivate our approach, consider the changes to a horizontal
slice of a painted egg in time (Figure 6). The color of an unpainted
background pixel drifts significantly. The color of all pixels exhibit
significant noise (some due to video compression and some due to
global illumination effects). Many pixels, especially towards the
right side of the painting (the painter’s dominant handedness) are
occluded in the majority of frames.

Our approach is based on two key observations. L. The value of an
unoccluded pixel should be piecewise constant in time; equivalently,
changes to a pixel on the canvas should be sparse in time. (The
stability of paint versus occluders has also been noted by Amati
and Brostow [2010].) Our approach is based on detecting and ig-
noring unstable pixels via moving standard deviation. II. Identical
sequences of frames, which indicate that no occluders are present,
provide crucial checkpoints for the progress of the painting. We call
such identical frames keyframes. We use keyframes to mask and
eliminate spurious changes in the intervening frames.

Color correction The first step in our pipeline corrects color drift
between adjacent frames. We do not include all pixels in the calcu-
lation, as many pixels may have changed due to occlusion or paint.
We solve for the per-channel linear function (offset and slope) that
minimizes the color difference in a least-squares sense, considering
only pixels whose magnitude of change lies between first and second
octiles. (Pixels which changed the least may be due to outliers, e.g.
oversaturated pixels.) We found this approach to be stabler than the
non-linear color correction described in [Hu et al. 2013].

Keyframe detection The second step in our pipeline searches
for keyframes, or sequences of repeated frames. We assume that a
sequence of repeated frames implies no foreground occluders. We
consider two frames to be repeated if they differ in less than n pixels;
we detect differences with an L*a*b*-space threshold. (See Table 1
for all parameters.) After a keyframe is detected, we reduce noise
by replacing its pixels with the per-pixel average in time. With these
known good frames, we perform our color correction step a second
time, this time aligning every frame with the most recent keyframe.

Inter-keyframe processing Keyframes allow us to reduce the
number of pixels under consideration. A pixel which does not change
from one keyframe to another should not change in the intervening
frames; any such changes should be ignored. We compute a differ-
ence mask between adjacent keyframes for use in inter-keyframe
processing. We again detect differences with a L*a*b*-space thresh-
old and close pixel-sized gaps in the mask with a 3 x 3 topological
closing operation. Outside of the mask, we linearly interpolate col-
ors between keyframes. Inside of the mask, we detect and repair
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Figure 5: Our pipeline for processing time lapse painting videos. See Section 4.1 for details.

rose egg eye apple cube candy cola graffiti

detection L*a*b* threshold 10 10 10 7 10 10 12 8
detection # differing pixels 50 50 50 50 50 50 80 50
detection # repeated frames 4 4 4 4 4 4 4 2
mask L*a*b* threshold 8 8 8 9 9 8 8 4
standard deviation threshold 1.5 05 05 0.6 1 0.8 1 1.5

Table 1: Keyframe parameters in our video processing pipeline.

occlusions. Painted marks are sparse in time and smoothly varying
or piecewise constant; we detect unstable values—occluders—at
each pixel with a thresholded L*a*b*-space moving standard de-
viation (in time, window size 7). We repair unstable pixels with a
moving median filter (in time) [Cheung and Kamath 2004] whose
window is made up of the m = 9 most recent stable pixels. The
moving standard deviation threshold is the most sensitive parameter
of our entire video processing pipeline. A small threshold minimizes
false positives (occlusions) but degrades the temporal resolution of
layers in the processed video. We have not found this to be a prob-
lem in our history-editing based applications (Section 5). See the
supplemental materials for processed videos in which we manually
selected thresholds for each subsequence to be as large as possible
while still suppressing occluders.

Smoothing To suppress temporal noise and enforce temporal spar-
sity, we perform adaptive bilateral filtering [Tomasi and Manduchi
1998] on each inter-keyframe sequence (in time, with window size
15 and maximum o = 200), and then we perform Lo smoothing [Xu
etal. 2011] (in time, x = 1.1, A = 0.001) for each pixel across all
frames in the entire video. In 1D, Xu et al.’s Lo smoothing algorithm
amounts to repeatedly solving a tridiagonal system of equations; we
constrain the very first and last pixels’ values (with a hard constraint)
to ensure that they remain unchanged.

lllumination division To convert our scrubbed videos into albedo
(reflectance) images, we must divide each pixel’s value by the incom-
ing illumination. We assume that the spatial variation in illumination
is unchanged throughout the entire sequence (e.g. the light source
does not move) and divide each pixel’s value by an illumination esti-
mate computed from the first frame. In the first frame, the canvas is
blank or nearly blank, so we perform a large, spatial median (window
size 55) and use each pixel’s maximum value (in any channel) as the
unnormalized illumination divisor. Although the canvas material’s
true reflectance is unknown, estimates for the reflectance of paper
placed on a non-white surface [Hubbe et al. 2008] typically range
from 0.5 to 0.7. We normalize all pixels’ illumination divisors with
the globally brightest value encountered at any point in the video.

This value is typically around 0.6; we cap it at 0.7. This step ensures
that the brightest value in our albedo images is less than 1.

Input videos and the result of our pipeline can be seen in Figure 8
and in the supplemental material.

5 Applications

The layer decomposition for a painting stores its time lapse history
as a sequence of RGBA or reflectance and transmittance images
containing the individual layers (see Figure 8 and the supplementary
materials) extracted from the original time lapse sequence using one
of the algorithms from Section 3. As these layers typically affect
only a small portion of the entire painting and are spatially coherent,
they can be represented compactly in memory using simple run-
length encoding. To achieve interactive response, we also store
bounding boxes of layers and compare them with the bounding box
of the edit so that the compositing operations can be done on a small
fraction of the total pixels. Moreover, when the edit affects a certain
interval in time, we can pre-composite prior and subsequent layers
into two RGBA images or four reflectance and transmittance images,
which are then blended together with the modified content.

Translucency-maximizing solutions are stable, general, and useful.
The CLOSEST-PAINT method, which seeks to recover the true color
and transparency, is appropriate for clean data where the differ-
ence between frames truly is a Porter-Duff over composite with a
single color, such as digital painting sequences (supplemental mate-
rials). Physical painting sequences are noisy, so we use translucency-
maximizing solutions, which make no assumptions about the input
data. The Kubelka-Munk layering model is a physically-based ap-
proach. When editing, the reflectance and transmittance layers can
be hue-shifted or modulated (increasing transparency and decreas-
ing the reflectance). The linear (Porter-Duff) model is “correct” for
extracting digital layers. It also works well for physical paintings.
It has the advantage that it is simple to work with, as it is built into
digital editing tools and GPU’s.

The apple in Figures 1 & 9 and the rose in Figure 9 were edited with
the Porter-Duff model. The eye in Figure 12 was edited with the
Kubelka-Munk layering model. The Kubelka-Munk model typically
produces layers that are more “translucent” than those produced in
the Porter-Duff model. The graffiti example in Figure 10 provides a
side-by-side comparison of the two models.

For videos with approximately 500 x 500 resolution, our entire
pipeline runs at around 2 frames per second on a single core of an In-
tel Core 17-3520M CPU (except for the whole-video Lo smoothing
stage). Most stages are pixelwise, and the algorithms are embar-



Figure 8: Examples of layers (bottom) reconstructed from a time lapse video (top) which was pre-processed using our pipeline (middle).
Individual layers were grouped into larger clusters to enhance their visibility. Time lapse (©) Marcello Barenghi.

rassingly parallelizable. The final whole-video Ly smoothing stage
was parallelized and run on a 60-core cluster of Intel Xeon E5-2670
CPU’s; this stage took around 10 minutes for a ~5000 frame video.
The decomposition of the ~ 5000 frame rose example takes ~ 60 MB
to store as a sequence of RGBA images (PNG format) and ~ 140
MB as a sequence of Kubelka-Munk reflectance and transmittance
images (as gzipped double-precision floating point values).

Given a painting and its layer decomposition, we can perform various
selection and editing operations (see Figure 1, 9, 10, 11, 12, and
the supplementary materials) that generalize the notion of layers in
digital painting programs.

Spatio-temporal selection & layering There are several possibil-
ities for using temporal information for selection. Users can position
the mouse at a specific spatial location and pick the temporal value of
the pixel underneath. They can also alter the selected temporal value
by scrubbing through time with the mouse wheel. When two or more
locations are specified, the tool can select layers which lie in the

Figure 9: Edits created using our Porter-Duff layer decomposition
on the apple sequence from Figure 1 (top), and on the rose sequence
(bottom, original image is on the left). Time lapse sequences (©)
Marcello Barenghi.

specified time interval. A more complex selection can be achieved
using selection strokes—scribbles. In this scenario algorithms based
on temporal information such as [Noris et al. 2012] can be used
to improve segmentation results. In Figure 11 we present a simpli-
fied solution where temporal statistics of all pixels underneath the
scribble are analyzed and then a set of dominant temporal clusters is
retrieved which can then be offered to the user as possible candidates
for selection. This approach can also be understood as a supervised
layer decomposition that helps artist convert the layer decomposition
into a smaller set of meaningful layers. The user can perform various
edits which composite nicely with prior and subsequent layers, as in
a digital image editing workflow (see Figure 1). The great advantage
of our approach is that the user can create different sets of layers
ex post even for physical paintings, in contrast with the traditional,
digital workflow which involves planning in advance.

Modification of extracted layers Besides recoloring extracted
layers or clustering them, the user can also modify their structure
directly or use temporal information to perform additional opera-
tions. It is possible to erase or re-order selected layers, which has
the effect of cloning, undo-ing or replaying a stroke at a different
spatial or temporal location. Existing algorithms can be used to
perform local layering [McCann and Pollard 2009] as well as soft
stacking [McCann and Pollard 2012] to rearrange recovered layers
and let them appear partially at multiple time frames. The user may
also draw new strokes at specific times, create a spatial selection at a
specific time and then move this selection to a different time to per-
form edits, or use time-of-creation as a parameter which can affect
edits, such as the creation of color gradients (see Figure 1, 9, 10, 12,
and supplementary material for illustrations of these operations).

6 Conclusions and Future Work

Our video processing pipeline tailored to time lapse painting videos
can clean the videos of even persistent occlusions, and produce
reflectance images suitable for paint layer decomposition and editing.
The less-used Kubelka-Munk layering equations are a convenient
alternative to their material mixing model and more suitable for
real-world data than the “over” blending operation used throughout
computer graphics. These equations can be “solved” efficiently
to find maximally transparent stroke layers. With a single-stroke
assumption for digital images, our 3 X 3 system can recover the
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Figure 10: Comparing edits created with our layer decomposition using the Porter-Duff (first row) and Kubelka-Munk (second row) models.
In each model, similar clusters of layers were recolored. Note the difference in layer translucency and the effect of recoloring. The original
unmodified painting is on the left while the final composition is on the right. Thumbnails of individual edits are shown on top of the Figure.

Time lapse video (©) Matyds Vesely.

original stroke color and its alpha channel extremely robustly (within

1 .
5z5 in each channel).

The history of a painting contains valuable information that can be
stored efficiently using run-length encoding and used for a variety
of history-based editing applications to generalize the notion of
layers. A live implementation for decomposing on-the-fly would
allow artists to use physical tools as their artistic input device.

One limitation of our approach is that we do not extract vector
strokes. This is challenging because physical tools may create quite
complex brush “shapes,” and an approximation, when replayed,
would not exactly match the final painting.

If an input video has too-low temporal resolution, multiple over-
lapping strokes could be painted between adjacent frames, and the
original painted colors may not be recoverable. Moreover, the greater
the magnitude of change, the less transparent the solution. Extreme
noise manifests as spurious strokes that appear and then disappear.
Artist drawing order will affect applications such as selection based
on time ranges (including our clustering). This is true for all applica-
tions of editing history, regardless of the problem domain. Our work
provides a new data source, but does not aim to solve problems in
the literature on interacting with editing history.

In the future, we plan to replace software instrumentation in systems
such as Chronicle [Grossman et al. 2010] and Chen et al. [2011;
2012] with our framework, in order to deliver similar functionality
for both digital and real-world paintings. One can imagine, for ex-
ample, an interactive gallery where visitors can inspect the creation
process of individual exhibited paintings using visualization systems
like WetPaint [Bonanni et al. 2009]. Recovered layers of real world
paintings can also be used to generate painting tutorials in the spirit
of Grabler et al. [2009]. Our technique can also enrich the tool set
of appearance operators for inverse image editing [Hu et al. 2013].
Such operators can be used for content-adaptive macros [Berthouzoz
et al. 2011], to predict the final appearance by example, and to per-
form automatic completion as in [Xing et al. 2014]. We wish to
explore applications in forensics and artwork restoration. Finally,

we wish to expand the class of videos we are able to process. Canvas
vibrations are a challenge unique to our domain.

A Kubelka-Munk Layering Derivation

Recall Equation 1 and our solution. The first two solutions, when
I;;, = 0or I, , = 0, are self-evident. For I;, , # 0, we can

express Equation 1 as T2 = (Ry, — I+, ) (R, — T L_). Recall our
i—1

physical constraints 0 < Ry, , Ty, It,, Iy, , < land Ry, +T3, < 1.
The latter is equivalent to 77 < (1 — Ry,)*. Thus we have an
equality for Tfi which is a parabola in R;,, and an inequality for Tfi s
also a parabola in I;,. Both parabola open upwards, and both reach
their minima when R, > 0 (because neither Iy, nor I;,_, equal 0),
and so are already increasing in Tfi when Ry, = 0. The remaining

solutions follow algebraically by intersecting the parabolas with
each other and with the line Tfi =1.
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Figure 12: Editing a decomposed painting with the Kubelka-Munk model. The user modifies colors in two extracted layers to adjust the
original painting. Unprocessed time lapse recording of the painting process is depicted below. Time lapse video (©) Marcello Barenghi.
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Figure 11: Image selection & layering: the user draws a selection
scribble (a), the system then suggests several temporal clusters
containing pixels underneath the scribble (b-d). The user can select
the appropriate cluster and use it as a layer for further editing.
Source time lapse video (©) Marcello Barenghi.
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